skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCarthy, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider pairs of anti-commuting [Formula: see text]-by-[Formula: see text] Hermitian matrices that are chosen randomly with respect to a Gaussian measure. Generically such a pair decomposes into the direct sum of [Formula: see text]-by-[Formula: see text] blocks on which the first matrix has eigenvalues [Formula: see text] and the second has eigenvalues [Formula: see text]. We call [Formula: see text] the skew spectrum of the pair. We derive a formula for the probability density of the skew spectrum, and show that the elements are repelling. 
    more » « less
  2. Abstract We establish a theory of noncommutative (NC) functions on a class of von Neumann algebras with a particular direct sum property, e.g.,$$B({\mathcal H})$$. In contrast to the theory’s origins, we do not rely on appealing to results from the matricial case. We prove that the$$k{\mathrm {th}}$$directional derivative of any NC function at a scalar point is ak-linear homogeneous polynomial in its directions. Consequences include the fact that NC functions defined on domains containing scalar points can be uniformly approximated by free polynomials as well as realization formulas for NC functions bounded on particular sets, e.g., the NC polydisk and NC row ball. 
    more » « less
  3. Jury and Martin establish an analogue of the classical inner-outer factorization of Hardy space functions. They show that every function f f in a Hilbert function space with a normalized complete Pick reproducing kernel has a factorization of the type f = φ<#comment/> g f=\varphi g , where g g is cyclic, φ<#comment/> \varphi is a contractive multiplier, and ‖<#comment/> f ‖<#comment/> = ‖<#comment/> g ‖<#comment/> \|f\|=\|g\| . In this paper we show that if the cyclic factor is assumed to be what we call free outer, then the factors are essentially unique, and we give a characterization of the factors that is intrinsic to the space. That lets us compute examples. We also provide several applications of this factorization. 
    more » « less